Скачать 367.48 Kb.
|
Системы счисления Системы счисления. Форматирование текста: Березин Андрей, ИС, 1 курс Автор текста: Руденко Г.В. Оглавление История развития систем счисления. 3 Двоичные системы счисления 8 Двоичная арифметика. 14 Формы представления чисел с фиксированной и плавающей запятой. 18 Сложение чисел с фиксированной запятой 22 Сложение чисел с плавающей запятой 22 Умножение чисел с фиксированной запятой 24 Умножение чисел с плавающей запятой 25 Список используемой литературы: 33 ^ Счисление, нумерация, - это совокупность приемов представления натуральных чисел. В любой системе счисления некоторые символы ( слова или знаки ) служат для обозначения определенных чисел, называемых узловыми, остальные числа ( алгоритмические ) получаются в результате каких – либо операций из узловых чисел. Системы счисления различаются выбором узловых чисел и способами образования алгоритмических, а с появлением письменных обозначений числовых символов системы счисления стали различаться характером числовых знаков и принципами их записи. Наиболее совершенным принципом представления чисел является позиционный ( поместный ) принцип, согласно которому один и тот же числовой знак ( цифра ) имеет различные значения в зависимости от места, где он расположен. Такая система счисления основывается на том, что некоторое число n единиц ( основание системы счисления ) объединяются в одну единицу второго разряда, n единиц второго разряда объединяются в одну единицу третьего разряда и т. д. Основанием систем счисления может быть любое число, больше единицы. К числу таких систем относится современная десятичная система счисления ( с основанием n=10 ). В ней для обозначения первых десяти чисел служат цифры 0,1,…,9. Несмотря на кажущуюся естественность такой системы, она явилась результатом длительного исторического развития. Возникновение десятичной системы счисления связывают со счетом на пальцах. Имелись системы счисления и с другим основанием: 5.12 ( счет дюжинами ), 20 ( следы такой системы сохранились во французком языке, например quatre – vingts, т. е. буквально четыре – двадцать, означает 80 ), 40, 60 и др. При вычислениях на ЭВМ часто применяется система счисления с основанием 2. У первобытных народов не существовало развитой системы счисления. Еще в 19 веке у многих племен Австралии и Полинезии было только два числительных: один и два; сочетания их образовывали числа: 3 -–два – один, 4 – два – два, 5 – два – два – один и 6 – два – два – два. О всех числах, больших 6, говорили «много», не индивидуализируя их. С развитием общественно – хозяйственной жизни возникла потребность в создании систем счисления, которые позволяли бы и обозначать все большие совокупности предметов. Одной из наиболее древних систем счисления является египетская иероглифическая нумерация, возникшая еще за 2500 – 3000 лет до н. э. Это была десятичная непозиционная система счисления, в которой для записи чисел применялся только принцип сложения ( числа, выраженные рядом стоящими цифрами, складываются ). Специальные знаки имелись для единицы ▯,десяти ⋓,ста и других десятичных разрядов до ![]() Аналогичными системами счисления были греческая геродианова, римская, сирийская и др. Римские цифры – традиционное название знаковой системы для обозначения чисел, основанной на употреблении особых символов для десятичных разрядов: I V X L C D M 1 5 10 50 100 500 1000 Возникла около 500 до н. э. у этрусков и использовалась в Древнем Риме; иногда употребляется и в настоящее время. В этой системе счисления натуральные числа записываются при помощи повторения этих цифр. При этом если большая цифра стоит перед меньшей, то они складываются ( принцип сложения ), если же меньшая – перед большей, то меньшая вычитается из большей ( принцип вычитания ). Последнее правило применяется только во избежания четырехкратного повторения одной и той же цифры. Например, I, X, C, ставятся соответственно перед X, C, M для обозначения 9, 90, 900 или перед V, L, D для обозначения 4, 40, 400. Например, VI=5+1=6, IV=5-1=4 ( вместо IIII ), XIX=10+10-1=19 ( вместо XVIIII), XL=50-10=40 ( вместо XXXX ), XXXIII=10+10+10+1+1+1=33 и т. д. Выполнение арифметических действий над многозначными числами в этой системе весьма неудобно. Более совершенными системами счисления являются алфавитные: ионийская, славянская, еврейская, арабская, а также грузинская и армянская. Первой алфавитной системой счисления была по – видимому, ионийская, возникшая в греческих колониях в Малой Азии в середине 5 века до н. э. В алфавитных системах счисления числа от 1 до 9, а также все десятки и сотни обозначаются, как правило, последовательными буквами алфавита ( над которыми ставятся черточки, чтобы отличить записи чисел от слов). Число 343 в ионийской системе записывалось так: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() Для обозначения чисел над буквами специальный знак ![]() ![]() ![]() Для обозначения и наименования высших десятичных разрядов ( более ![]() ![]() ![]() ![]() Славянские цифры до 18 века были основным цифровым обозначением в России. В алфавитных системах счисления, запись чисел гораздо короче, чем в предыдущих; кроме того, над числами, записанными в алфавитной нумерации, гораздо легче производить арифметические действия. Однако в алфавитных системах счисления нельзя записывать сколь угодно большие числа. Греки расширили ионийскую нумерацию: числа 1000, 2000,…,9000 они обозначали теми же буквами, что и 1,2,…,9, но ставили штрих внизу слева: так, ![]() ![]() ![]() Однако в силу отсутствия знака для нуля, которым можно было бы отмечать недостающие разряды, запись чисел в этой системе счисления не была однозначной. Особенностью вавилонской системы счисления было то, что абсолютное значение чисел оставалось неопределенным. Другая система счисления основанная на позиционном принципе, возникла у индейцев майя, обитателей полуострова Юкатан ( Центральная Америка) в середине 1 – го тыс. н. э. У майя существовали две системы счисления: одна, напоминающая египетскую, употреблялась в повседневной жизни, другая – позиционная, с основанием 20 и особым знаком для нуля, применялась при календарных расчетах. Запись в этой системе, как и в нашей современной, носила абсолютный характер. Современная десятичная позиционная система счисления возникла на основе нумерации, зародившейся не позднее 5 в. в Индии. До этого в Индии имелись системы счисления, в которых применялся не только принцип сложения, но и принцип умножения ( единица какого – нибудь разряда умножается на стоящее слева число). Аналогично строились старокитайская система счисления и некоторые другие. Если, например, условно обозначить число 3 символом III, а число 10 символом X, то число 30 запишется как IIIX ( три десятка ). Такие системы счисления могли служить подходом к мозданию десятичной позиционной нумерации. Десятичная позиционная система дает принципиальную возможность записывать сколь угодно большие числа. Запись чисел в ней компактна и удобна для производства арифметических операций. Поэтому вскоре после возникновения десятичная позиционная система счисления начинает распространяться из Индии на Запад и Восток. В 9 веке появляются рукописи на арабском языке, в которых излагается эта система счисления, в 10 веке десятичная позиционная нумерация доходит до Испании, в начале 12 века она появляется и в других странах Европы. Новая система счисления получила название арабской, потому что в Европе с ней познакомились впервые по латинским переводам с арабского. Только в 16 веке новая нумерация получила широкое распространение в науке и житейском обиходе. В России она начинает распространятся в 17 веке и в самом начале 18 в. вытесняет алфавитную. С введением десятичных дробей десятичная позиционная система счисления стала универсальным средством для записи всех действительных чисел. |
![]() | Цель: познакомить учащихся с историей возникновения и развития систем счисления; указать на основные недостатки и преимущества непозиционных... | ![]() | ... |
![]() | Формулировка Проблемы использование технологии «Корзина идей», понятие систем счисления | ![]() | К числу таких систем относится современная десятичная система счисления, возникновение которой связано со счётом на пальцах. В средневековой... |
![]() | Непозиционная система счисления – система, в которой символы, обозначающие то или иное количество, не меняют своего значения в зависимости... | ![]() | Какая из множества иероглифических систем счисления, которые существовали в разные времена у разных народов, используется до сих... |
![]() | Целью лабораторной работы является: ознакомление с базовыми арифметическими командами процессора на примере решения задачи смены... | ![]() | В настоящее время развитие средств автоматизации проектирования электронных систем определяется следующими факторами |
![]() | Цели: повторить основные понятия, определения в различных системах счисления; указать и повторить наиболее сложные алгоритмы вычислительных... | ![]() | Ознакомить учащихся с историей возникновения и развития сс. Дать представление о позиционных и непозиционных сс. Дать определение... |