Лекция №14. Технология Ethernet (802. 3)




Скачать 176.35 Kb.
НазваниеЛекция №14. Технология Ethernet (802. 3)
Дата публикации15.05.2013
Размер176.35 Kb.
ТипЛекция
odtdocs.ru > Информатика > Лекция

Лекция №14. Технология Ethernet (802.3)


Ethernet - это самый распространенный на сегодняшний день стандарт локальных сетей. Общее количество сетей, работающих по протоколу Ethernet в настоящее время, оценивается в 5 миллионов, а количество компьютеров с установленными сетевыми адаптерами Ethernet - в 50 миллионов.

Когда говорят Ethernet, то под этим обычно понимают любой из вариантов этой технологии. В более узком смысле Ethernet - это сетевой стандарт, основанный на экспериментальной сети Ethernet Network, которую фирма Xerox разработала и реализовала в 1975 году. Метод доступа был опробован еще раньше: во второй половине 60-х годов в радиосети Гавайского университета использовались различные варианты случайного доступа к общей радиосреде, получившие общее название Aloha. В 1980 году фирмы DEC, Intel и Xerox совместно разработали и опубликовали стандарт Ethernet версии II для сети, построенной на основе коаксиального кабеля, который стал последней версией фирменного стандарта Ethernet. Поэтому фирменную версию стандарта Ethernet называют стандартом Ethernet DIX или Ethernet II.

На основе стандарта Ethernet DIX был разработан стандарт IEEE 802.3, который во многом совпадает со своим предшественником, но некоторые различия все же имеются. В то время как в стандарте IEEE 802.3 различаются уровни MAC и LLC, в оригинальном Ethernet оба эти уровня объединены в единый канальный уровень, В Ethernet DIX определяется протокол тестирования конфигурации (Ethernet Configuration Test Protocol), который отсутствует в IEEE 802.3. Несколько отличается и формат кадра, хотя минимальные и максимальные размеры кадров в этих стандартах совпадают. Часто для того, чтобы отличить Ethernet, определенный стандартом IEEE, и фирменный Ethernet DIX, первый называют технологией 802.3, а за фирменным оставляют название Ethernet без дополнительных обозначений.

В зависимости от типа физической среды стандарт IEEE 802.3 имеет различные модификации - l0Base-5, l0Base-2, l0Base-T, l0Base-FL, l0Base-FB.

В 1995 году был принят стандарт Fast Ethernet, который во многом не является самостоятельным стандартом, о чем говорит и тот факт, что его описание просто является дополнительным разделом к основному стандарту 802,3 - разделом 802.3ч. Аналогично, принятый в 1998 году стандарт Gigabit Ethernet описан в разделе 802.3z основного документа.

Для передачи двоичной информации по кабелю для всех вариантов физического уровня технологии Ethernet, обеспечивающих пропускную способность 10 Мбит/с, используется манчестерский код.

Все виды стандартов Ethernet (в том числе Fast Ethernet и Gigabit Ethernet) используют один и тот же метод разделения среды передачи данных - метод CSMA/CD.
^

3.3.1. Метод доступа CSMA/CD


В сетях Ethernet используется метод доступа к среде передачи данных, называемый методом коллективного доступа с опознаванием несущей и обнаружением коллизий (carrier-sense-multiply-access with collision detection, CSMA/CD).


Этот метод применяется исключительно в сетях с логической общей шиной (к которым относятся и радиосети, породившие этот метод). Все компьютеры такой сети имеют непосредственный доступ к общей шине, поэтому она может быть использована для передачи данных между любыми двумя узлами сети. Одновременно все компьютеры сети имеют возможность немедленно (с учетом задержки распространения сигнала по физической среде) получить данные, которые любой из компьютеров начал передавать на общую шину (рис. 3.3). Простота схемы подключения - это один из факторов, определивших успех стандарта Ethernet. Говорят, что кабель, к которому подключены все станции, работает в режиме коллективного доступа (Multiply Access, MA).

Рис. 3.3. Метод случайного доступа CSMA/CD
^

Этапы доступа к среде


Все данные, передаваемые по сети, помещаются в кадры определенной структуры и снабжаются уникальным адресом станции назначения.

Чтобы получить возможность передавать кадр, станция должна убедиться, что разделяемая среда свободна. Это достигается прослушиванием основной гармоники сигнала, которая также называется несущей частотой (carrier-sense, CS). Признаком незанятости среды является отсутствие на ней несущей частоты, которая при манчестерском способе кодирования равна 5-10 МГц, в зависимости от последовательности единиц и нулей, передаваемых в данный момент.

Если среда свободна, то узел имеет право начать передачу кадра. Этот кадр изображен на рис. 3.3 первым. Узел ^ 1 обнаружил, что среда свободна, и начал передавать свой кадр. В классической сети Ethernet на коаксиальном кабеле сигналы передатчика узла 1 распространяются в обе стороны, так что все узлы сети их получают. Кадр данных всегда сопровождается преамбулой (preamble), которая состоит из 7 байт, состоящих из значений 10101010, и 8-го байта, равного 10101011. Преамбула нужна для вхождения приемника в побитовый и побайтовый синхронизм с передатчиком.

Все станции, подключенные к кабелю, могут распознать факт передачи кадра, и та станция, которая узнает собственный адрес в заголовках кадра, записывает его содержимое в свой внутренний буфер, обрабатывает полученные данные, передает их вверх по своему стеку, а затем посылает по кабелю кадр-ответ. Адрес станции источника содержится в исходном кадре, поэтому станция-получатель знает, кому нужно послать ответ.

Узел ^ 2 во время передачи кадра узлом 1 также пытался начать передачу своего кадра, однако обнаружил, что среда занята - на ней присутствует несущая частота, - поэтому узел 2 вынужден ждать, пока узел 1 не прекратит передачу кадра.

После окончания передачи кадра все узлы сети обязаны выдержать технологическую паузу (Inter Packet Gap) в 9,6 мкс. Эта пауза, называемая также межкадровым интервалом, нужна для приведения сетевых адаптеров в исходное состояние, а также для предотвращения монопольного захвата среды одной станцией. После окончания технологической паузы узлы имеют право начать передачу своего кадра, так как среда свободна. Из-за задержек распространения сигнала по кабелю не все узлы строго одновременно фиксируют факт окончания передачи кадра узлом 1.

В приведенном примере узел 2 дождался окончания передачи кадра узлом 1, сделал паузу в 9,6 мкс и начал передачу своего кадра.
^

Возникновение коллизии


При описанном подходе возможна ситуация, когда две станции одновременно пытаются передать кадр данных по общей среде. Механизм прослушивания среды и пауза между кадрами не гарантируют от возникновения такой ситуации, когда две или более станции одновременно решают, что среда свободна, и начинают передавать свои кадры. Говорят, что при этом происходит коллизия (collision), так как содержимое обоих кадров сталкивается на общем кабеле и происходит искажение информации - методы кодирования, используемые в Ethernet, не позволяют выделять сигналы каждой станции из общего сигнала.


ПРИМЕЧАНИЕ Заметим, что этот факт отражен в составляющей «Base(band)», присутствующей в названиях всех физических протоколов технологии Ethernet (например, 10Base-2,10Base-T и т. п.). Baseband network означает сеть с немодулированной передачей, в которой сообщения пересылаются в цифровой форме по единственному каналу, без частотного разделения.


Коллизия - это нормальная ситуация в работе сетей Ethernet. В примере, изображенном на рис. 3.4, коллизию породила одновременная передача данных узлами 3 и У. Для возникновения коллизии не обязательно, чтобы несколько станций начали передачу абсолютно одновременно, такая ситуация маловероятна. Гораздо вероятней, что коллизия возникает из-за того, что один узел начинает передачу раньше другого, но до второго узла сигналы первого просто не успевают дойти к тому времени, когда второй узел решает начать передачу своего кадра. То есть коллизии - это следствие распределенного характера сети.

Чтобы корректно обработать коллизию, все станции одновременно наблюдают за возникающими на кабеле сигналами. Если передаваемые и наблюдаемые сигналы отличаются, то фиксируется обнаружение коллизии (collision detection, CD). Для увеличения вероятности скорейшего обнаружения коллизии всеми станциями сети станция, которая обнаружила коллизию, прерывает передачу своего кадра (в произвольном месте, возможно, и не на границе байта) и усиливает ситуацию коллизии посылкой в сеть специальной последовательности из 32 бит, называемой jam-последовательностью.



Рис. 3.4. Схема возникновения и распространения коллизии

После этого обнаружившая коллизию передающая станция обязана прекратить передачу и сделать паузу в течение короткого случайного интервала времени. Затем она может снова предпринять попытку захвата среды и передачи кадра. Случайная пауза выбирается по следующему алгоритму:

Пауза = L *(интервал отсрочки),

где интервал отсрочки равен 512 битовым интервалам (в технологии Ethernet принято все интервалы измерять в битовых интервалах; битовый интервал обозначается как bt и соответствует времени между появлением двух последовательных бит данных на кабеле; для скорости 10 Мбит/с величина битового интервала равна 0,1 мкс или 100 нс);

L представляет собой целое число, выбранное с равной вероятностью из диапазона [0, 2N ], где N - номер повторной попытки передачи данного кадра: 1,2,..., 10.

После 10-й попытки интервал, из которого выбирается пауза, не увеличивается. Таким образом, случайная пауза может принимать значения от 0 до 52,4 мс.

Если 16 последовательных попыток передачи кадра вызывают коллизию, то передатчик должен прекратить попытки и отбросить этот кадр.

Из описания метода доступа видно, что он носит вероятностный характер, и вероятность успешного получения в свое распоряжение общей среды зависит от загруженности сети, то есть от интенсивности возникновения в станциях потребности в передаче кадров. При разработке этого метода в конце 70-х годов предполагалось, что скорость передачи данных в 10 Мбит/с очень высока по сравнению с потребностями компьютеров во взаимном обмене данными, поэтому загрузка сети будет всегда небольшой. Это предположение остается иногда справедливым и по сей день, однако уже появились приложения, работающие в реальном масштабе времени с мультимедийной информацией, которые очень загружают сегменты Ethernet. При этом коллизии возникают гораздо чаще. При значительной интенсивности коллизий полезная пропускная способность сети Ethernet резко падает, так как сеть почти постоянно занята повторными попытками передачи кадров. Для уменьшения интенсивности возникновения коллизий нужно либо уменьшить трафик, сократив, например, количество узлов в сегменте или заменив приложения, либо повысить скорость протокола, например перейти на Fast Ethernet.

Следует отметить, что метод доступа CSMA/CD вообще не гарантирует станции, что она когда-либо сможет получить доступ к среде. Конечно, при небольшой загрузке сети вероятность такого события невелика, но при коэффициенте использования сети, приближающемся к 1, такое событие становится очень вероятным. Этот недостаток метода случайного доступа - плата за его чрезвычайную простоту, которая сделала технологию Ethernet самой недорогой. Другие методы доступа - маркерный доступ сетей Token Ring и FDDI, метод Demand Priority сетей 100VG-AnyLAN - свободны от этого недостатка.
^

Время двойного оборота и распознавание коллизий


Четкое распознавание коллизий всеми станциями сети является необходимым условием корректной работы сети Ethernet. Если какая-либо передающая станция не распознает коллизию и решит, что кадр данных ею передан верно, то этот кадр данных будет утерян. Из-за наложения сигналов при коллизии информация кадра исказится, и он будет отбракован принимающей станцией (возможно, из-за несовпадения контрольной суммы). Скорее всего, искаженная информация будет повторно передана каким-либо протоколом верхнего уровня, например транспортным или прикладным, работающим с установлением соединения. Но повторная передача сообщения протоколами верхних уровней произойдет через значительно более длительный интервал времени (иногда даже через несколько секунд) по сравнению с микросекундными интервалами, которыми оперирует протокол Ethernet. Поэтому если коллизии не будут надежно распознаваться узлами сети Ethernet, то это приведет к заметному снижению полезной пропускной способности данной сети.

Для надежного распознавания коллизий должно выполняться следующее соотношение:

Tmin >=PDV,

где Тmin - время передачи кадра минимальной длины, a PDV - время, за которое сигнал коллизии успевает распространиться до самого дальнего узла сети. Так как в худшем случае сигнал должен пройти дважды между наиболее удаленными друг от друга станциями сети (в одну сторону проходит неискаженный сигнал, а на обратном пути распространяется уже искаженный коллизией сигнал), то это время называется временем двойного оборота (Path Delay Value, PDV).

При выполнении этого условия передающая станция должна успевать обнаружить коллизию, которую вызвал переданный ее кадр, еще до того, как она закончит передачу этого кадра.

Очевидно, что выполнение этого условия зависит, с одной стороны, от длины минимального кадра и пропускной способности сети, а с другой стороны, от длины кабельной системы сети и скорости распространения сигнала в кабеле (для разных типов кабеля эта скорость несколько отличается).

Все параметры протокола Ethernet подобраны таким образом, чтобы при нормальной работе узлов сети коллизии всегда четко распознавались. При выборе параметров, конечно, учитывалось и приведенное выше соотношение, связывающее между собой минимальную длину кадра и максимальное расстояние между станциями в сегменте сети.

В стандарте Ethernet принято, что минимальная длина поля данных кадра составляет 46 байт (что вместе со служебными полями дает минимальную длину кадра 64 байт, а вместе с преамбулой - 72 байт или 576 бит). Отсюда может быть определено ограничение на расстояние между станциями.

Итак, в 10-мегабитном Ethernet время передачи кадра минимальной длины равно 575 битовых интервалов, следовательно, время двойного оборота должно быть меньше 57,5 мкс. Расстояние, которое сигнал может пройти за это время, зависит от типа кабеля и для толстого коаксиального кабеля равно примерно 13 280 м. Учитывая, что за это время сигнал должен пройти по линии связи дважды, расстояние между двумя узлами не должно быть больше 6 635 м. В стандарте величина этого расстояния выбрана существенно меньше, с учетом других, более строгих ограничений.

Одно из таких ограничений связано с предельно допустимым затуханием сигнала. Для обеспечения необходимой мощности сигнала при его прохождении между наиболее удаленными друг от друга станциями сегмента кабеля максимальная длина непрерывного сегмента толстого коаксиального кабеля с учетом вносимого им затухания выбрана в 500 м. Очевидно, что на кабеле в 500 м условия распознавания коллизий будут выполняться с большим запасом для кадров любой стандартной длины, в том числе и 72 байт (время двойного оборота по кабелю 500 м составляет всего 43,3 битовых интервала). Поэтому минимальная длина кадра могла бы быть установлена еще меньше. Однако разработчики технологии не стали уменьшать минимальную длину кадра, имея в виду многосегментные сети, которые строятся из нескольких сегментов, соединенных повторителями.

Повторители увеличивают мощность передаваемых с сегмента на сегмент сигналов, в результате затухание сигналов уменьшается и можно использовать сеть гораздо большей длины, состоящую из нескольких сегментов. В коаксиальных реализациях Ethernet разработчики ограничили максимальное количество сегментов в сети пятью, что в свою очередь ограничивает общую длину сети 2500 метрами. Даже в такой многосегментной сети условие обнаружения коллизий по-прежнему выполняется с большим запасом (сравним полученное из условия допустимого затухания расстояние в 2500 м с вычисленным выше максимально возможным по времени распространения сигнала расстоянием 6635 м). Однако в действительности временной запас является существенно меньше, поскольку в многосегментных сетях сами повторители вносят в распространение сигнала дополнительную задержку в несколько десятков битовых интервалов. Естественно, небольшой запас был сделан также для компенсации отклонений параметров кабеля и повторителей.

В результате учета всех этих и некоторых других факторов было тщательно подобрано соотношение между минимальной длиной кадра и максимально возможным расстоянием между станциями сети, которое обеспечивает надежное распознавание коллизий. Это расстояние называют также максимальным диаметром сети.

С увеличением скорости передачи кадров, что имеет место в новых стандартах, базирующихся на том же методе доступа CSMA/CD, например Fast Ethernet, максимальное расстояние между станциями сети уменьшается пропорционально увеличению скорости передачи. В стандарте Fast Ethernet оно составляет около 210 м, а в стандарте Gigabit Ethernet оно было бы ограничено 25 метрами, если бы разработчики стандарта не предприняли некоторых мер по увеличению минимального размера пакета.

В табл. 3.1 приведены значения основных параметров процедуры передачи кадра стандарта 802.3, которые не зависят от реализации физической среды. Важно отметить, что каждый вариант физической среды технологии Ethernet добавляет к этим ограничениям свои, часто более строгие ограничения, которые также должны выполняться и которые будут рассмотрены ниже.

Таблица 3.1. Параметры уровня MAC Ethernet


^

3.3.2. Максимальная производительность сети Ethernet


Количество обрабатываемых кадров Ethernet в секунду часто указывается производителями мостов/коммутаторов и маршрутизаторов как основная характеристика производительности этих устройств. В свою очередь, интересно знать чистую максимальную пропускную способность сегмента Ethernet в кадрах в секунду в идеальном случае, когда в сети нет коллизий и нет дополнительных задержек, вносимых мостами и маршрутизаторами. Такой показатель помогает оценить требования к производительности коммуникационных устройств, так как в каждый порт устройства не может поступать больше кадров в единицу времени, чем позволяет это сделать соответствующий протокол.

Для коммуникационного оборудования наиболее тяжелым режимом является обработка кадров минимальной длины. Это объясняется тем, что на обработку каждого кадра мост, коммутатор или маршрутизатор тратит примерно одно и то же время, связанное с просмотром таблицы продвижения пакета, формированием нового кадра (для маршрутизатора) и т. п. А количество кадров минимальной длины, поступающих на устройство в единицу времени, естественно больше, чем кадров любой другой длины. Другая характеристика производительности коммуникационного оборудования - бит в секунду - используется реже, так как она не говорит о том, какого размера кадры при этом обрабатывало устройство, а на кадрах максимального размера достичь высокой производительности, измеряемой в битах в секунду гораздо легче.

Используя параметры, приведенные в табл. 3.1, рассчитаем максимальную производительность сегмента Ethernet в таких единицах, как число переданных кадров (пакетов) минимальной длины в секунду.


ПРИМЕЧАНИЕ При указании пропускной способности сетей термины кадр и пакет обычно используются как синонимы. Соответственно, аналогичными являются и единицы измерения производительности frames-per-second, fps и packets-per-second, pps.


Для расчета максимального количества кадров минимальной длины, проходящих по сегменту Ethernet, заметим, что размер кадра минимальной длины вместе с преамбулой составляет 72 байт или 576 бит (рис. 3.5.), поэтому на его передачу затрачивается 57,5 мкс. Прибавив межкадровый интервал в 9,6 мкс, получаем, что период следования кадров минимальной длины составляет 67,1 мкс. Отсюда максимально возможная пропускная способность сегмента Ethernet составляет 14 880 кадр/с.



Рис. 3.5. К расчету пропускной способности протокола Ethernet

Естественно, что наличие в сегменте нескольких узлов снижает эту величину за счет ожидания доступа к среде, а также за счет коллизий, приводящих к необходимости повторной передачи кадров.

Кадры максимальной длины технологии Ethernet имеют поле длины 1500 байт, что вместе со служебной информацией дает 1518 байт, а с преамбулой составляет 1526 байт или 12 208 бит. Максимально возможная пропускная способность сегмента Ethernet для кадров максимальной длины составляет 813 кадр/с. Очевидно, что при работе с большими кадрами нагрузка на мосты, коммутаторы и маршрутизаторы довольно ощутимо снижается.

Теперь рассчитаем, какой максимальной полезной пропускной способностью в бит в секунду обладают сегменты Ethernet при использовании кадров разного размера.

Под полезной пропускной способностью протокола понимается скорость передачи пользовательских данных, которые переносятся полем данных кадра. Эта пропускная способность всегда меньше номинальной битовой скорости протокола Ethernet за счет нескольких факторов:

  • служебной информации кадра;

  • межкадровых интервалов (IPG);

  • ожидания доступа к среде.

Для кадров минимальной длины полезная пропускная способность равна:

СП =14880 * 46 *8 = 5,48 Мбит/с.

Это намного меньше 10 Мбит/с, но следует учесть, что кадры минимальной длины используются в основном для передачи квитанций, так что к передаче собственно данных файлов эта скорость отношения не имеет.

Для кадров максимальной длины полезная пропускная способность равна:

СП = 813 *1500 * 8 =9,76 Мбит/с,

что весьма близко к номинальной скорости протокола.

Еще раз подчеркнем, что такой скорости можно достигнуть только в том случае, когда двум взаимодействующим узлам в сети Ethernet другие узлы не мешают, что бывает крайне редко,

При использовании кадров среднего размера с полем данных в 512 байт пропускная способность сети составит 9,29 Мбит/с, что тоже достаточно близко к предельной пропускной способности в 10 Мбит/с.


ВНИМАНИЕ Отношение текущей пропускной способности сети к ее максимальной пропускной способности называется коэффициентом использования сети (network utilization). При этом при определении текущей пропускной способности принимается во внимание передача по сети любой информации, как пользовательской, так и служебной. Коэффициент является важным показателем для технологий разделяемых сред, так как при случайном характере метода доступа высокое значение коэффициента использования часто говорит о низкой полезной пропускной способности сети (то есть скорости передачи пользовательских донных) - слишком много времени узлы тратят на процедуру получения доступа и повторные передачи кадров после коллизий.


При отсутствии коллизий и ожидания доступа коэффициент использования сети зависит от размера поля данных кадра и имеет максимальное значение 0,976 при передаче кадров максимальной длины. Очевидно, что в реальной сети Ethernet среднее значение коэффициента использования сети может значительно отличаться от этой величины. Более сложные случаи определения пропускной способности сети с учетом ожидания доступа и отработки коллизий будут рассмотрены ниже.
^

3.3.5. Методика расчета конфигурации сети Ethernet


Соблюдение многочисленных ограничений, установленных для различных стандартов физического уровня сетей Ethernet, гарантирует корректную работу сети (естественно, при исправном состоянии всех элементов физического уровня).

Наиболее часто приходится проверять ограничения, связанные с длиной отдельного сегмента кабеля, а также количеством повторителей и общей длиной сети. Правила «5-4-3» для коаксиальных сетей и «4-х хабов» для сетей на основе витой пары и оптоволокна не только дают гарантии работоспособности сети, но и оставляют большой «запас прочности» сети. Например, если посчитать время двойного оборота в сети, состоящей из 4-х повторителей 10Base-5 и 5-ти сегментов максимальный длины 500 м, то окажется, что оно составляет 537 битовых интервала. А так как время передачи кадра минимальной длины, состоящего вместе с преамбулой 72 байт, равно 575 битовым интервалам, то видно, что разработчики стандарта Ethernet оставили 38 битовых интервала в качестве запаса для надежности. Тем не менее комитет 802.3 говорит, что и 4 дополнительных битовых интервала создают достаточный запас надежности.

Комитет IEEE 802.3 приводит исходные данные о задержках, вносимых повторителями и различными средами передачи данных, для тех специалистов, которые хотят самостоятельно рассчитывать максимальное количество повторителей и максимальную общую длину сети, не довольствуясь теми значениями, которые приведены в правилах «5-4-3» и «4-х хабов». Особенно такие расчеты полезны для сетей, состоящих из смешанных кабельных систем, например коаксиала и оптоволокна, на которые правила о количестве повторителей не рассчитаны. При этом максимальная длина каждого отдельного физического сегмента должна строго соответствовать стандарту, то есть 500 м для «толстого» коаксиала, 100 м для витой пары и т.д.

Чтобы сеть Ethernet, состоящая из сегментов различной физической природы, работала корректно, необходимо выполнение четырех основных условий:

  • количество станций в сети не более 1024;

  • максимальная длина каждого физического сегмента не более величины, определенной в соответствующем стандарте физического уровня;

  • время двойного оборота сигнала (Path Delay Value, PDV) между двумя самыми удаленными друг от друга станциями сети не более 575 битовых интервала;

  • сокращение межкадрового интервала IPG (Path Variability Value, PW) при прохождении последовательности кадров через все повторители должно быть не больше, чем 49 битовых интервала. Так как при отправке кадров конечные узлы обеспечивают начальное межкадровое расстояние в 96 битовых интервала, то после прохождения повторителя оно должно быть не меньше, чем 96 - 49 = 47 битовых интервала.

Соблюдение этих требований обеспечивает корректность работы сети даже в случаях, когда нарушаются простые правила конфигурирования, определяющие максимальное количество повторителей и общую длину сети в 2500 м.
^

Расчет PDV


Для упрощения расчетов обычно используются справочные данные IEEE, содержащие значения задержек распространения сигналов в повторителях, приемопередатчиках и различных физических средах. В табл. 3.5 приведены данные, необходимые для расчета значения PDV для всех физических стандартов сетей Ethernet. Битовый интервал обозначен как bt.

Таблица 3.5. Данные для расчета значения PDV



Комитет 802.3 старался максимально упростить выполнение расчетов, поэтому данные, приведенные в таблице, включают сразу несколько этапов прохождения сигнала. Например, задержки, вносимые повторителем, состоят из задержки входного трансивера, задержки блока повторения и задержки выходного трансивера. Тем не менее в таблице все эти задержки представлены одной величиной, названной базой сегмента. Чтобы не нужно было два раза складывать задержки, вносимые кабелем, в таблице даются удвоенные величины задержек для каждого типа кабеля.

В таблице используются также такие понятия, как левый сегмент, правый сегмент и промежуточный сегмент. Поясним эти термины на примере сети, приведенной на рис. 3.13. Левым сегментом называется сегмент, в котором начинается путь сигнала от выхода передатчика (выход Тх на рис. 3.10) конечного узла. На примере это сегмент 1. Затем сигнал проходит через промежуточные сегменты 2-5 и доходит до приемника (вход Rх на рис. 3.10) наиболее удаленного узла наиболее удаленного сегмента 6, который называется правым. Именно здесь в худшем случае происходит столкновение кадров и возникает коллизия, что, и подразумевается в таблице.



Рис. 3.13. Пример сети Ethernet, состоящей из сегментов различных физических стандартов

С каждым сегментом связана постоянная задержка, названная базой, которая зависит только от типа сегмента и от положения сегмента на пути сигнала (левый, промежуточный или правый). База правого сегмента, в котором возникает коллизия, намного превышает базу левого и промежуточных сегментов.

Кроме этого, с каждым сегментом связана задержка распространения сигнала вдоль кабеля сегмента, которая зависит от длины сегмента и вычисляется путем умножения времени распространения сигнала по одному метру кабеля (в битовых интервалах) на длину кабеля в метрах.

Расчет заключается в вычислении задержек, вносимых каждым отрезком кабеля (приведенная в таблице задержка сигнала на 1 м кабеля умножается на длину сегмента), а затем суммировании этих задержек с базами левого, промежуточных и правого сегментов. Общее значение PDV не должно превышать 575.

Так как левый и правый сегменты имеют различные величины базовой задержки, то в случае различных типов сегментов на удаленных краях сети необходимо выполнить расчеты дважды: один раз принять в качестве левого сегмента сегмент одного типа, а во второй - сегмент другого типа. Результатом можно считать максимальное значение PDV. В нашем примере крайние сегменты сети принадлежат к одному типу - стандарту 10Base-T, поэтому двойной расчет не требуется, но если бы они были сегментами разного типа, то в первом случае нужно было бы принять в качестве левого сегмент между станцией и концентратором 1, а во втором считать левым сегмент между станцией и концентратором 5.

Приведенная на рисунке сеть в соответствии с правилом 4-х хабов не является корректной - в сети между узлами сегментов 1 и 6 имеется 5 хабов, хотя не все сегменты являются сегментами lOBase-FB. Кроме того, общая длина сети равна 2800 м, что нарушает правило 2500 м. Рассчитаем значение PDV для нашего примера.

Левый сегмент 1/ 15,3 (база) + 100 * 0,113= 26,6.

Промежуточный сегмент 2/33,5 + 1000 * 0,1 = 133,5.

Промежуточный сегмент 3/ 24 + 500 * 0,1 = 74,0.

Промежуточный сегмент 4/24 + 500 * 0,1 = 74,0.

Промежуточный сегмент 5/ 24 + 600 * 0,1 = 84,0.

Правый сегмент 6/165 + 100 * 0,113 = 176,3.

Сумма всех составляющих дает значение PDV, равное 568,4.

Так как значение PDV меньше максимально допустимой величины 575, то эта сеть проходит по критерию времени двойного оборота сигнала несмотря на то, что ее общая длина составляет больше 2500 м, а количество повторителей - больше 4-х.
^

Расчет PW


Чтобы признать конфигурацию сети корректной, нужно рассчитать также уменьшение межкадрового интервала повторителями, то есть величину PW.

Для расчета PW также можно воспользоваться значениями максимальных величин уменьшения межкадрового интервала при прохождении повторителей различных физических сред, рекомендованными IEEE и приведенными в табл. 3.6.

Таблица 3.6. Сокращение межкадрового интервала повторителями



В соответствии с этими данными рассчитаем значение PVV для нашего примера.

Левый сегмент 1 10Base-T: сокращение в 10,5 bt.

Промежуточный сегмент 2 10Base-FL: 8.

Промежуточный сегмент 3 10Base-FB: 2.

Промежуточный сегмент 4 10Base-FB: 2.

Промежуточный сегмент 5 10Base-FB: 2.

Сумма этих величин дает значение PW, равное 24,5, что меньше предельного значения в 49 битовых интервала.

В результате приведенная в примере сеть соответствует стандартам Ethernet по всем параметрам, связанным и с длинами сегментов, и с количеством повторителей.

Добавить документ в свой блог или на сайт

Похожие:

Лекция №15. Технология Token Ring (802. 5)
Это право передается с помощью кадра специального формата, называемого маркером или токеном (token)

Курсовая работа по дисциплине «Локальные вычислительные сети» на...
Организовать доступ к локальной сети при помощи технологии Ethernet по стандарту 802. 3u(Fast Ethernet)

Лекция №12. Технология dhcp. Технология dns
Протокол динамического конфигурирования хостов для автоматического назначения настроек конфигурации, пользователи и администраторы...

Отчет по лабораторной работе №1 по курсу «Сети ЭВМ и Средства Телекоммуникаций»
Описание адаптера: Ethernet controller: Realtek Semiconductor Co., Ltd. Rtl8101E/rtl8102e pci express Fast Ethernet controller (rev...

Тематическое планирование по предмету «Технология» 5 класс
Вводный инструктаж по технике безопасности, правила поведения в кабинете «Технология». Введение в предмет «Технология»

Лекция №18. Технология беспроводных сетей WiFi
Именно благодаря этой технологии Internet становится мобильным и дает пользователю свободу перемещения не то что в пределах комнаты,...

Конкурс I. «Как вы яхту назовёте, так она и поплывёт»
Педагогические технологии: технология коллективного и группового взаимодействия, проблемное обучение, сюжетно-ролевая игра, диалоговая...

Лекция №1
Лекция № Общие принципы эффективной организации учебного процесса. Физиологиче­ская цена учебных нагрузок

Лекция №1
Лекция № Общие принципы эффективной организации учебного процесса. Физиологиче­ская цена учебных нагрузок

Лекция №1
Лекция № Общие принципы эффективной организации учебного процесса. Физиологиче­ская цена учебных нагрузок

Вы можете разместить ссылку на наш сайт:
Школьные материалы


При копировании материала укажите ссылку © 2013
контакты
odtdocs.ru
Главная страница